ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.17749
189
0
v1v2v3v4 (latest)

A Generative Framework for Personalized Sticker Retrieval

22 September 2025
Changjiang Zhou
Ruqing Zhang
Jiafeng Guo
Yu Liu
Fan Zhang
Ganyuan Luo
Xueqi Cheng
ArXiv (abs)PDFHTML
6 Figures
Bibliography:1 Pages
5 Tables
Appendix:14 Pages
Abstract

Formulating information retrieval as a variant of generative modeling, specifically using autoregressive models to generate relevant identifiers for a given query, has recently attracted considerable attention. However, its application to personalized sticker retrieval remains largely unexplored and presents unique challenges: existing relevance-based generative retrieval methods typically lack personalization, leading to a mismatch between diverse user expectations and the retrieved results. To address this gap, we propose PEARL, a novel generative framework for personalized sticker retrieval, and make two key contributions: (i) To encode user-specific sticker preferences, we design a representation learning model to learn discriminative user representations. It is trained on three prediction tasks that leverage personal information and click history; and (ii) To generate stickers aligned with a user's query intent, we propose a novel intent-aware learning objective that prioritizes stickers associated with higher-ranked intents. Empirical results from both offline evaluations and online tests demonstrate that PEARL significantly outperforms state-of-the-art methods.

View on arXiv
Comments on this paper