80

Decentor-V: Lightweight ML Training on Low-Power RISC-V Edge Devices

Main:11 Pages
3 Figures
Bibliography:2 Pages
5 Tables
Abstract

Modern IoT devices increasingly rely on machine learning solutions to process data locally. However, the lack of graphics processing units (GPUs) or dedicated accelerators on most platforms makes on-device training largely infeasible, often requiring cloud-based services to perform this task. This procedure often raises privacy-related concerns, and creates dependency on reliable and always-on connectivity. Federated Learning (FL) is a new trend that addresses these issues by enabling decentralized and collaborative training directly on devices, but it requires highly efficient optimization algorithms. L-SGD, a lightweight variant of stochastic gradient descent, has enabled neural network training on Arm Cortex-M Microcontroller Units (MCUs). This work extends L-SGD to RISC-V-based MCUs, an open and emerging architecture that still lacks robust support for on-device training. L-SGD was evaluated on both Arm and RISC-V platforms using 32-bit floating-point arithmetic, highlighting the performance impact of the absence of Floating-Point Units (FPUs) in RISC-V MCUs. To mitigate these limitations, we introduce an 8-bit quantized version of L-SGD for RISC-V, which achieves nearly 4x reduction in memory usage and a 2.2x speedup in training time, with negligible accuracy degradation.

View on arXiv
Comments on this paper