52
v1v2v3v4 (latest)

Re-uploading quantum data: A universal function approximator for quantum inputs

Main:15 Pages
12 Figures
Bibliography:4 Pages
Appendix:5 Pages
Abstract

Quantum data re-uploading has proved powerful for classical inputs, where repeatedly encoding features into a small circuit yields universal function approximation. Extending this idea to quantum inputs remains underexplored, as the information contained in a quantum state is not directly accessible in classical form. We propose and analyze a quantum data re-uploading architecture in which a qubit interacts sequentially with fresh copies of an arbitrary input state. The circuit can approximate any bounded continuous function using only one ancilla qubit and single-qubit measurements. By alternating entangling unitaries with mid-circuit resets of the input register, the architecture realizes a discrete cascade of completely positive and trace-preserving maps, analogous to collision models in open quantum system dynamics. Our framework provides a qubit-efficient and expressive approach to designing quantum machine learning models that operate directly on quantum data.

View on arXiv
Comments on this paper