136
v1v2 (latest)

End-to-End Crop Row Navigation via LiDAR-Based Deep Reinforcement Learning

Main:6 Pages
8 Figures
Bibliography:1 Pages
Abstract

Reliable navigation in under-canopy agricultural environments remains a challenge due to GNSS unreliability, cluttered rows, and variable lighting. To address these limitations, we present an end-to-end learning-based navigation system that maps raw 3D LiDAR data directly to control commands using a deep reinforcement learning policy trained entirely in simulation. Our method includes a voxel-based downsampling strategy that reduces LiDAR input size by 95.83%, enabling efficient policy learning without relying on labeled datasets or manually designed control interfaces. The policy was validated in simulation, achieving a 100% success rate in straight-row plantations and showing a gradual decline in performance as row curvature increased, tested across varying sinusoidal frequencies and amplitudes.

View on arXiv
Comments on this paper