ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.18807
112
0

Single-Branch Network Architectures to Close the Modality Gap in Multimodal Recommendation

23 September 2025
Christian Ganhor
Marta Moscati
Anna Hausberger
Shah Nawaz
Markus Schedl
    HAIOffRL
ArXiv (abs)PDFHTMLGithub
Main:33 Pages
22 Figures
Bibliography:4 Pages
29 Tables
Appendix:13 Pages
Abstract

Traditional recommender systems rely on collaborative filtering, using past user-item interactions to help users discover new items in a vast collection. In cold start, i.e., when interaction histories of users or items are not available, content-based recommender systems use side information instead. Hybrid recommender systems (HRSs) often employ multimodal learning to combine collaborative and side information, which we jointly refer to as modalities. Though HRSs can provide recommendations when some modalities are missing, their quality degrades. In this work, we utilize single-branch neural networks equipped with weight sharing, modality sampling, and contrastive loss to provide accurate recommendations even in missing modality scenarios by narrowing the modality gap. We compare these networks with multi-branch alternatives and conduct extensive experiments on three datasets. Six accuracy-based and four beyond-accuracy-based metrics help assess the recommendation quality for the different training paradigms and their hyperparameters in warm-start and missing modality scenarios. We quantitatively and qualitatively study the effects of these different aspects on bridging the modality gap. Our results show that single-branch networks achieve competitive performance in warm-start scenarios and are significantly better in missing modality settings. Moreover, our approach leads to closer proximity of an item's modalities in the embedding space. Our full experimental setup is available atthis https URL.

View on arXiv
Comments on this paper