ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.18924
48
0

Audio-Driven Universal Gaussian Head Avatars

23 September 2025
Kartik Teotia
Helge Rhodin
Mohit Mendiratta
Hyeongwoo Kim
Marc Habermann
Christian Theobalt
ArXiv (abs)PDFHTML
Main:11 Pages
14 Figures
Bibliography:4 Pages
11 Tables
Appendix:1 Pages
Abstract

We introduce the first method for audio-driven universal photorealistic avatar synthesis, combining a person-agnostic speech model with our novel Universal Head Avatar Prior (UHAP). UHAP is trained on cross-identity multi-view videos. In particular, our UHAP is supervised with neutral scan data, enabling it to capture the identity-specific details at high fidelity. In contrast to previous approaches, which predominantly map audio features to geometric deformations only while ignoring audio-dependent appearance variations, our universal speech model directly maps raw audio inputs into the UHAP latent expression space. This expression space inherently encodes, both, geometric and appearance variations. For efficient personalization to new subjects, we employ a monocular encoder, which enables lightweight regression of dynamic expression variations across video frames. By accounting for these expression-dependent changes, it enables the subsequent model fine-tuning stage to focus exclusively on capturing the subject's global appearance and geometry. Decoding these audio-driven expression codes via UHAP generates highly realistic avatars with precise lip synchronization and nuanced expressive details, such as eyebrow movement, gaze shifts, and realistic mouth interior appearance as well as motion. Extensive evaluations demonstrate that our method is not only the first generalizable audio-driven avatar model that can account for detailed appearance modeling and rendering, but it also outperforms competing (geometry-only) methods across metrics measuring lip-sync accuracy, quantitative image quality, and perceptual realism.

View on arXiv
Comments on this paper