ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.19226
16
0

Neighbor Embeddings Using Unbalanced Optimal Transport Metrics

23 September 2025
Muhammad Rana
Keaton Hamm
    OT
ArXiv (abs)PDFHTML
Main:6 Pages
Bibliography:3 Pages
6 Tables
Abstract

This paper proposes the use of the Hellinger--Kantorovich metric from unbalanced optimal transport (UOT) in a dimensionality reduction and learning (supervised and unsupervised) pipeline. The performance of UOT is compared to that of regular OT and Euclidean-based dimensionality reduction methods on several benchmark datasets including MedMNIST. The experimental results demonstrate that, on average, UOT shows improvement over both Euclidean and OT-based methods as verified by statistical hypothesis tests. In particular, on the MedMNIST datasets, UOT outperforms OT in classification 81\% of the time. For clustering MedMNIST, UOT outperforms OT 83\% of the time and outperforms both other metrics 58\% of the time.

View on arXiv
Comments on this paper