ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.19362
40
0

DeepACTIF: Efficient Feature Attribution via Activation Traces in Neural Sequence Models

18 September 2025
Benedikt W. Hosp
    FAtt
ArXiv (abs)PDFHTMLGithub (1★)
Main:8 Pages
6 Figures
Bibliography:2 Pages
3 Tables
Appendix:1 Pages
Abstract

Feature attribution is essential for interpreting deep learning models, particularly in time-series domains such as healthcare, biometrics, and human-AI interaction. However, standard attribution methods, such as Integrated Gradients or SHAP, are computationally intensive and not well-suited for real-time applications. We present DeepACTIF, a lightweight and architecture-aware feature attribution method that leverages internal activations of sequence models to estimate feature importance efficiently. Focusing on LSTM-based networks, we introduce an inverse-weighted aggregation scheme that emphasises stability and magnitude of activations across time steps. Our evaluation across three biometric gaze datasets shows that DeepACTIF not only preserves predictive performance under severe feature reduction (top 10% of features) but also significantly outperforms established methods, including SHAP, IG, and DeepLIFT, in terms of both accuracy and statistical robustness. Using Wilcoxon signed-rank tests and effect size analysis, we demonstrate that DeepACTIF yields more informative feature rankings with significantly lower error across all top-k conditions (10 - 40%). Our experiments demonstrate that DeepACTIF not only reduces computation time and memory usage by orders of magnitude but also preserves model accuracy when using only top-ranked features. That makes DeepACTIF a viable solution for real-time interpretability on edge devices such as mobile XR headsets or embedded health monitors.

View on arXiv
Comments on this paper