ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.19506
165
1
v1v2 (latest)

Frame-based Equivariant Diffusion Models for 3D Molecular Generation

23 September 2025
Mohan Guo
Cong Liu
Patrick Forré
    DiffM
ArXiv (abs)PDFHTML
Main:10 Pages
5 Figures
Bibliography:2 Pages
4 Tables
Appendix:1 Pages
Abstract

Recent methods for molecular generation face a trade-off: they either enforce strict equivariance with costly architectures or relax it to gain scalability and flexibility. We propose a frame-based diffusion paradigm that achieves deterministic E(3)-equivariance while decoupling symmetry handling from the backbone. Building on this paradigm, we investigate three variants: Global Frame Diffusion (GFD), which assigns a shared molecular frame; Local Frame Diffusion (LFD), which constructs node-specific frames and benefits from additional alignment constraints; and Invariant Frame Diffusion (IFD), which relies on pre-canonicalized invariant representations. To enhance expressivity, we further utilize EdgeDiT, a Diffusion Transformer with edge-aware attention.

View on arXiv
Comments on this paper