190
v1v2 (latest)

Graph-based Neural Space Weather Forecasting

Main:4 Pages
18 Figures
Bibliography:2 Pages
5 Tables
Appendix:14 Pages
Abstract

Accurate space weather forecasting is crucial for protecting our increasingly digital infrastructure. Hybrid-Vlasov models, like Vlasiator, offer physical realism beyond that of current operational systems, but are too computationally expensive for real-time use. We introduce a graph-based neural emulator trained on Vlasiator data to autoregressively predict near-Earth space conditions driven by an upstream solar wind. We show how to achieve both fast deterministic forecasts and, by using a generative model, produce ensembles to capture forecast uncertainty. This work demonstrates that machine learning offers a way to add uncertainty quantification capability to existing space weather prediction systems, and make hybrid-Vlasov simulation tractable for operational use.

View on arXiv
Comments on this paper