ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.19611
84
0

Evaluating Language Translation Models by Playing Telephone

23 September 2025
Syeda Jannatus Saba
Steven Skiena
ArXiv (abs)PDFHTMLGithub
Main:5 Pages
4 Figures
10 Tables
Appendix:11 Pages
Abstract

Our ability to efficiently and accurately evaluate the quality of machine translation systems has been outrun by the effectiveness of current language models--which limits the potential for further improving these models on more challenging tasks like long-form and literary translation. We propose an unsupervised method to generate training data for translation evaluation over different document lengths and application domains by repeated rounds of translation between source and target languages. We evaluate evaluation systems trained on texts mechanically generated using both model rotation and language translation approaches, demonstrating improved performance over a popular translation evaluation system (xCOMET) on two different tasks: (i) scoring the quality of a given translation against a human reference and (ii) selecting which of two translations is generationally closer to an original source document.

View on arXiv
Comments on this paper