All Papers
Title |
---|
Title |
---|
We investigate the integration of attention maps from a pre-trained Vision Transformer into voxel representations to enhance bimanual robotic manipulation. Specifically, we extract attention maps from DINOv2, a self-supervised ViT model, and interpret them as pixel-level saliency scores over RGB images. These maps are lifted into a 3D voxel grid, resulting in voxel-level semantic cues that are incorporated into a behavior cloning policy. When integrated into a state-of-the-art voxel-based policy, our attention-guided featurization yields an average absolute improvement of 8.2% and a relative gain of 21.9% across all tasks in the RLBench bimanual benchmark.
View on arXiv