ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.21443
128
1

One Model, Many Morals: Uncovering Cross-Linguistic Misalignments in Computational Moral Reasoning

25 September 2025
Sualeha Farid
Jayden Lin
Zean Chen
Shivani Kumar
David Jurgens
    LRM
ArXiv (abs)PDFHTMLGithub
Main:9 Pages
13 Figures
Bibliography:5 Pages
6 Tables
Appendix:8 Pages
Abstract

Large Language Models (LLMs) are increasingly deployed in multilingual and multicultural environments where moral reasoning is essential for generating ethically appropriate responses. Yet, the dominant pretraining of LLMs on English-language data raises critical concerns about their ability to generalize judgments across diverse linguistic and cultural contexts. In this work, we systematically investigate how language mediates moral decision-making in LLMs. We translate two established moral reasoning benchmarks into five culturally and typologically diverse languages, enabling multilingual zero-shot evaluation. Our analysis reveals significant inconsistencies in LLMs' moral judgments across languages, often reflecting cultural misalignment. Through a combination of carefully constructed research questions, we uncover the underlying drivers of these disparities, ranging from disagreements to reasoning strategies employed by LLMs. Finally, through a case study, we link the role of pretraining data in shaping an LLM's moral compass. Through this work, we distill our insights into a structured typology of moral reasoning errors that calls for more culturally-aware AI.

View on arXiv
Comments on this paper