ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.21854
8
0

Perception-Consistency Multimodal Large Language Models Reasoning via Caption-Regularized Policy Optimization

26 September 2025
Songjun Tu
Qichao Zhang
Jingbo Sun
Y. Fu
Linjing Li
X. Lan
Dongmei Jiang
Yaowei Wang
Dongbin Zhao
    OffRLLRM
ArXiv (abs)PDFHTMLGithub
Main:8 Pages
12 Figures
Bibliography:2 Pages
Appendix:2 Pages
Abstract

While multimodal large language models excel at tasks that integrate visual perception with symbolic reasoning, their performance is often undermined by a critical vulnerability: perception-induced errors that propagate through the reasoning chain. Current reinforcement learning (RL) fine-tuning methods, while enhancing reasoning abilities, largely fail to address the underlying misalignment between visual grounding and the subsequent reasoning process. To address this challenge, we propose \textbf{Caption-Regularized Policy Optimization (CapPO)}, a novel RL framework that explicitly enforces perceptual consistency during policy optimization. CapPO integrates two key mechanisms: (1) a caption-based consistency regularization, which minimizes the divergence between responses conditioned on raw images and those conditioned on captions, thereby anchoring reasoning to semantically faithful visual content; and (2) a KL-weighted advantage estimation scheme, which adaptively scales reinforcement signals to strengthen perceptually consistent trajectories while suppressing spurious correlations. Extensive experiments on five math-focused and five general reasoning benchmarks demonstrate that CapPO achieves competitive performance, yielding gains of +6.0% accuracy on math-related tasks and +2.4% on general reasoning tasks over the base Qwen2.5-VL-7B model. Moreover, ablation studies further confirm the effectiveness of each component, while error analysis reveals that CapPO significantly reduces perception-related mistakes compared with baselines. Overall, CapPO provides a simple yet effective framework for improving multimodal reasoning.

View on arXiv
Comments on this paper