ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.22161
138
0
v1v2 (latest)

Pushing Toward the Simplex Vertices: A Simple Remedy for Code Collapse in Smoothed Vector Quantization

26 September 2025
Takashi Morita
    MQ
ArXiv (abs)PDFHTML
Main:8 Pages
2 Figures
Bibliography:3 Pages
6 Tables
Appendix:2 Pages
Abstract

Vector quantization, which discretizes a continuous vector space into a finite set of representative vectors (a codebook), has been widely adopted in modern machine learning. Despite its effectiveness, vector quantization poses a fundamental challenge: the non-differentiable quantization step blocks gradient backpropagation. Smoothed vector quantization addresses this issue by relaxing the hard assignment of a codebook vector into a weighted combination of codebook entries, represented as the matrix product of a simplex vector and the codebook. Effective smoothing requires two properties: (1) smoothed quantizers should remain close to a onehot vector, ensuring tight approximation, and (2) all codebook entries should be utilized, preventing code collapse. Existing methods typically address these desiderata separately. By contrast, the present study introduces a simple and intuitive regularization that promotes both simultaneously by minimizing the distance between each simplex vertex and its KKK-nearest smoothed quantizers. Experiments on representative benchmarks, including discrete image autoencoding and contrastive speech representation learning, demonstrate that the proposed method achieves more reliable codebook utilization and improves performance compared to prior approaches.

View on arXiv
Comments on this paper