ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.22700
98
0
v1v2 (latest)

Global Prompt Refinement with Non-Interfering Attention Masking for One-Shot Federated Learning

21 September 2025
Zhuang Qi
Pan Yu
Lei Meng
Sijin Zhou
Han Yu
Xiaoxiao Li
Xiangxu Meng
    FedMLVLM
ArXiv (abs)PDFHTML
Main:10 Pages
7 Figures
Bibliography:4 Pages
14 Tables
Appendix:11 Pages
Abstract

Federated Prompt Learning (FPL) enables communication-efficient adaptation by tuning lightweight prompts on top of frozen pre-trained models. Existing FPL methods typically rely on global information, which is only available after the second training round, to facilitate collaboration among client models. Therefore, they are inherently dependent on multi-round communication to fully exhibit their strengths. Moreover, existing one-shot federated learning methods typically focus on fitting seen tasks, but lack cross-task generalization. To bridge this gap, we propose the Global Prompt Refinement with Non-Interfering Attention Masking (GPR-NIAM) method for one-shot FPL. The core idea is to design a masking mechanism that restricts excessive interaction between the original text embeddings and the learnable prompt embeddings. GPR-NIAM achieves this through the collaboration of two key modules. Firstly, the attention isolation module suppresses attention from the learnable prompt tokens to the original text tokens, and reweights the reverse attention which preserves generalization across tasks. Secondly, the cross-silo collaborative refinement module integrates decentralized visual knowledge into a unified base and calibrates the global prompt through multi-source cross-modal knowledge alignment, further mitigating the inconsistency caused by data heterogeneity. Extensive experiments conducted on ten benchmark datasets under two tasks show that GPR-NIAM outperforms eight state-of-the-art methods in both class-level and domain-level generalization.

View on arXiv
Comments on this paper