ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.22853
77
0

Patient-specific Biomolecular Instruction Tuning

26 September 2025
Irsyad Adam
Zekai Chen
David Laub
Shaun Porwal
Arda Pekis
Kevin Brown
ArXiv (abs)PDFHTML
Main:8 Pages
2 Figures
Bibliography:4 Pages
9 Tables
Appendix:2 Pages
Abstract

Proteomics data is essential to pathogenic understanding of a disease phenotype. In cancer, analysis of molecular signatures enables precision medicine through the identification of biological processes that drive individualized tumor progression, therapeutic resistance, and clinical heterogeneity. Recent advances in multimodal large language models (LLMs) have shown remarkable capacity to integrate and reason across heterogeneous data modalities. However, performing multi-modal language modeling for molecular understanding of patient-specific proteomics remains a significant challenge due to two barriers: (1) the lack of instruction-tuning datasets that enable clinical interpretation from proteomics data, and (2) the absence of language modeling architectures designed to capture the rich heterogeneity of molecular data. In this work, we introduce CPTAC-PROTSTRUCT, the first instruction tuning dataset for molecular understanding of oncology, comprising over 400k open-ended examples derived from individualized proteomic profiles curated from the largest national proteomics cancer study (CPTAC). Additionally, we propose KRONOS (Knowledge Representation of patient Omics Networks in Oncology via Structured tuning), a novel graph-LLM framework that leverages molecular interaction topology with proteomics to learn patient-specific graph representations for enhanced clinical reasoning. We show that KRONOS achieves competitive performance across benchmark clinical tasks, including molecular classification, temporal trajectory modeling, and tumor stage prediction from proteomics data. Ultimately, this approach empowers LLMs to understand patient-level pathogenesis, advancing precision medicine through more accurate diagnosis, prognosis, and treatment stratification.

View on arXiv
Comments on this paper