ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.23140
178
1

Tagging the Thought: Unlocking Personalization Reasoning via Reinforcement Learning

27 September 2025
Song Jin
J. Zhang
Y. Liu
Xun Zhang
Yufei Zhang
Fei Jiang
Guojun Yin
Wei Lin
Rui Yan
    OffRLLRM
ArXiv (abs)PDFHTML
Main:8 Pages
9 Figures
Bibliography:3 Pages
5 Tables
Appendix:5 Pages
Abstract

Recent advancements have endowed Large Language Models (LLMs) with impressive general reasoning capabilities, yet they often struggle with personalization reasoning - the crucial ability to analyze user history, infer unique preferences, and generate tailored responses. To address this limitation, we introduce TagPR, a novel training framework that significantly enhances an LLM's intrinsic capacity for personalization reasoning through a tagging the thought approach. Our method first develops a data-driven pipeline to automatically generate and semantically label reasoning chains, creating a structured dataset that fosters interpretable reasoning. We then propose a synergistic training strategy that begins with Supervised Fine-Tuning (SFT) on this tagged data to establish foundational reasoning patterns, followed by a multi-stage reinforcement learning (RL) process. This RL phase is guided by a unique composite reward signal, which integrates tag-based constraints and a novel Personalization Reward Model with User Embeddings (PRMU) to achieve fine-grained alignment with user-specific logic. Extensive experiments on the public LaMP benchmark and a self-constructed dataset demonstrate that our approach achieves state-of-the-art results, delivering an average improvement of 32.65% over the base model across all tasks. Our work validates that structured, interpretable reasoning is a highly effective pathway to unlocking genuine personalization capabilities in LLMs.

View on arXiv
Comments on this paper