ViTSP: A Vision Language Models Guided Framework for Large-Scale Traveling Salesman Problems
- VLM

Solving Traveling Salesman Problem (TSP) is NP-hard yet fundamental for wide real-world applications. Classical exact methods face challenges in scaling, and heuristic methods often require domain-specific parameter calibration. While learning-based approaches have shown promise, they suffer from poor generalization and limited scalability due to fixed training data. This work proposes ViTSP, a novel framework that leverages pre-trained vision language models (VLMs) to visually guide the solution process for large-scale TSPs. The VLMs function to identify promising small-scale subproblems from a visualized TSP instance, which are then efficiently optimized using an off-the-shelf solver to improve the global solution. ViTSP bypasses the dedicated model training at the user end while maintaining effectiveness across diverse instances. Experiments on real-world TSP instances ranging from 1k to 88k nodes demonstrate that ViTSP consistently achieves solutions with average optimality gaps below 0.2%, outperforming existing learning-based methods. Under the same runtime budget, it surpasses the best-performing heuristic solver, LKH-3, by reducing its gaps by 12% to 100%, particularly on very-large-scale instances with more than 10k nodes. Our framework offers a new perspective in hybridizing pre-trained generative models and operations research solvers in solving combinatorial optimization problems, with practical implications for integration into more complex logistics systems. The code is available atthis https URL.
View on arXiv