ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.23822
40
0

Space Group Conditional Flow Matching

28 September 2025
Omri Puny
Y. Lipman
Benjamin Kurt Miller
ArXiv (abs)PDFHTML
Main:9 Pages
7 Figures
Bibliography:4 Pages
9 Tables
Appendix:6 Pages
Abstract

Inorganic crystals are periodic, highly-symmetric arrangements of atoms in three-dimensional space. Their structures are constrained by the symmetry operations of a crystallographic \emph{space group} and restricted to lie in specific affine subspaces known as \emph{Wyckoff positions}. The frequency an atom appears in the crystal and its rough positioning are determined by its Wyckoff position. Most generative models that predict atomic coordinates overlook these symmetry constraints, leading to unrealistically high populations of proposed crystals exhibiting limited symmetry. We introduce Space Group Conditional Flow Matching, a novel generative framework that samples significantly closer to the target population of highly-symmetric, stable crystals. We achieve this by conditioning the entire generation process on a given space group and set of Wyckoff positions; specifically, we define a conditionally symmetric noise base distribution and a group-conditioned, equivariant, parametric vector field that restricts the motion of atoms to their initial Wyckoff position. Our form of group-conditioned equivariance is achieved using an efficient reformulation of \emph{group averaging} tailored for symmetric crystals. Importantly, it reduces the computational overhead of symmetrization to a negligible level. We achieve state of the art results on crystal structure prediction and de novo generation benchmarks. We also perform relevant ablations.

View on arXiv
Comments on this paper