ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.24325
135
0
v1v2 (latest)

ReCon-GS: Continuum-Preserved Gaussian Streaming for Fast and Compact Reconstruction of Dynamic Scenes

29 September 2025
Jiaye Fu
Qiankun Gao
Chengxiang Wen
Y. Wu
Siwei Ma
Jiaqi Zhang
Jian Zhang
ArXiv (abs)PDFHTMLGithub (4★)
Main:10 Pages
11 Figures
Bibliography:3 Pages
12 Tables
Appendix:8 Pages
Abstract

Online free-viewpoint video (FVV) reconstruction is challenged by slow per-frame optimization, inconsistent motion estimation, and unsustainable storage demands. To address these challenges, we propose the Reconfigurable Continuum Gaussian Stream, dubbed ReCon-GS, a novel storage-aware framework that enables high fidelity online dynamic scene reconstruction and real-time rendering. Specifically, we dynamically allocate multi-level Anchor Gaussians in a density-adaptive fashion to capture inter-frame geometric deformations, thereby decomposing scene motion into compact coarse-to-fine representations. Then, we design a dynamic hierarchy reconfiguration strategy that preserves localized motion expressiveness through on-demand anchor re-hierarchization, while ensuring temporal consistency through intra-hierarchical deformation inheritance that confines transformation priors to their respective hierarchy levels. Furthermore, we introduce a storage-aware optimization mechanism that flexibly adjusts the density of Anchor Gaussians at different hierarchy levels, enabling a controllable trade-off between reconstruction fidelity and memory usage. Extensive experiments on three widely used datasets demonstrate that, compared to state-of-the-art methods, ReCon-GS improves training efficiency by approximately 15% and achieves superior FVV synthesis quality with enhanced robustness and stability. Moreover, at equivalent rendering quality, ReCon-GS slashes memory requirements by over 50% compared to leading state-of-the-art methods.

View on arXiv
Comments on this paper