Circuit-Aware Reward Training: A Mechanistic Framework for Longtail Robustness in RLHF

Reinforcement Learning from Human Feedback (RLHF) reward models exhibit systematic failures on longtail distributions, leading to reward hacking and misalignment. We propose a mechanistic interpretability framework that identifies specialized neural circuits responsible for rare-event processing in reward models. Drawing from recent advances showing distributed specialization for rare tokens in language models\citep{liu2025no, liu2025emergent}, we hypothesize that reward models also develop functionally distinct circuits for longtail scenarios. Our theoretical framework establishes formal connections between circuit specialization, reward generalization bounds, and longtail performance. We introduce \textbf{Circuit-Aware Reward Training (CART)}, which uses circuit analysis to guide data augmentation, regularization, and ensemble strategies. This approach provides both theoretical insights into reward model failures and practical interventions for improving longtail robustness.
View on arXiv