88

Bundle Network: a Machine Learning-Based Bundle Method

Main:13 Pages
7 Figures
Bibliography:6 Pages
22 Tables
Appendix:15 Pages
Abstract

This paper presents Bundle Network, a learning-based algorithm inspired by the Bundle Method for convex non-smooth minimization problems. Unlike classical approaches that rely on heuristic tuning of a regularization parameter, our method automatically learns to adjust it from data. Furthermore, we replace the iterative resolution of the optimization problem that provides the search direction-traditionally computed as a convex combination of gradients at visited points-with a recurrent neural model equipped with an attention mechanism. By leveraging the unrolled graph of computation, our Bundle Network can be trained end-to-end via automatic differentiation. Experiments on Lagrangian dual relaxations of the Multi-Commodity Network Design and Generalized Assignment problems demonstrate that our approach consistently outperforms traditional methods relying on grid search for parameter tuning, while generalizing effectively across datasets.

View on arXiv
Comments on this paper