111
v1v2v3 (latest)

Agentic Exploration of Physics Models

Main:48 Pages
31 Figures
3 Tables
Abstract

The process of scientific discovery relies on an interplay of observations, analysis, and hypothesis generation. Machine learning is increasingly being adopted to address individual aspects of this process. However, it remains an open challenge to fully automate the heuristic, iterative loop required to discover the laws of an unknown system by exploring it through experiments and analysis, without tailoring the approach to the specifics of a given task. Here, we introduce SciExplorer, an agent that leverages large language model tool-use capabilities to enable exploration of systems without any domain-specific blueprints, and apply it to physical systems that are initially unknown to the agent. We test SciExplorer on a broad set of models spanning mechanical dynamical systems, wave evolution, and quantum many-body physics. Despite using a minimal set of tools, primarily based on code execution, we observe impressive performance on tasks such as recovering equations of motion from observed dynamics and inferring Hamiltonians from expectation values. The demonstrated effectiveness of this setup opens the door towards similar scientific exploration in other domains, without the need for finetuning or task-specific instructions.

View on arXiv
Comments on this paper