4

Score-based Membership Inference on Diffusion Models

Main:8 Pages
7 Figures
Bibliography:4 Pages
6 Tables
Appendix:7 Pages
Abstract

Membership inference attacks (MIAs) against diffusion models have emerged as a pressing privacy concern, as these models may inadvertently reveal whether a given sample was part of their training set. We present a theoretical and empirical study of score-based MIAs, focusing on the predicted noise vectors that diffusion models learn to approximate. We show that the expected denoiser output points toward a kernel-weighted local mean of nearby training samples, such that its norm encodes proximity to the training set and thereby reveals membership. Building on this observation, we propose SimA, a single-query attack that provides a principled, efficient alternative to existing multi-query methods. SimA achieves consistently strong performance across variants of DDPM, Latent Diffusion Model (LDM). Notably, we find that Latent Diffusion Models are surprisingly less vulnerable than pixel-space models, due to the strong information bottleneck imposed by their latent auto-encoder. We further investigate this by differing the regularization hyperparameters (β\beta in β\beta-VAE) in latent channel and suggest a strategy to make LDM training more robust to MIA. Our results solidify the theory of score-based MIAs, while highlighting that Latent Diffusion class of methods requires better understanding of inversion for VAE, and not simply inversion of the Diffusion process

View on arXiv
Comments on this paper