ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.25282
108
1
v1v2 (latest)

Toward Causal-Visual Programming: Enhancing Agentic Reasoning in Low-Code Environments

29 September 2025
Jiexi Xu
Jiaqi Liu
Ran Tong
Su Liu
ArXiv (abs)PDFHTML
Main:4 Pages
Bibliography:1 Pages
Abstract

Large language model (LLM) agents are increasingly capable of orchestrating complex tasks in low-code environments. However, these agents often exhibit hallucinations and logical inconsistencies because their inherent reasoning mechanisms rely on probabilistic associations rather than genuine causal understanding. This paper introduces a new programming paradigm: Causal-Visual Programming (CVP), designed to address this fundamental issue by explicitly introducing causal structures into the workflow design. CVP allows users to define a simple "world model" for workflow modules through an intuitive low-code interface, effectively creating a Directed Acyclic Graph (DAG) that explicitly defines the causal relationships between modules. This causal graph acts as a crucial constraint during the agent's reasoning process, anchoring its decisions to a user-defined causal structure and significantly reducing logical errors and hallucinations by preventing reliance on spurious correlations. To validate the effectiveness of CVP, we designed a synthetic experiment that simulates a common real-world problem: a distribution shift between the training and test environments. Our results show that a causally anchored model maintained stable accuracy in the face of this shift, whereas a purely associative baseline model that relied on probabilistic correlations experienced a significant performance drop. The primary contributions of this study are: a formal definition of causal structures for workflow modules; the proposal and implementation of a CVP framework that anchors agent reasoning to a user-defined causal graph; and empirical evidence demonstrating the framework's effectiveness in enhancing agent robustness and reducing errors caused by causal confusion in dynamic environments. CVP offers a viable path toward building more interpretable, reliable, and trustworthy AI agents.

View on arXiv
Comments on this paper