ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.25444
124
0

Neural Optimal Transport Meets Multivariate Conformal Prediction

29 September 2025
Vladimir Kondratyev
Alexander Fishkov
Nikita Kotelevskii
Mahmoud Hegazy
Remi Flamary
Maxim Panov
Eric Moulines
ArXiv (abs)PDFHTML
Main:9 Pages
11 Figures
Bibliography:8 Pages
3 Tables
Appendix:17 Pages
Abstract

We propose a framework for conditional vector quantile regression (CVQR) that combines neural optimal transport with amortized optimization, and apply it to multivariate conformal prediction. Classical quantile regression does not extend naturally to multivariate responses, while existing approaches often ignore the geometry of joint distributions. Our method parametrizes the conditional vector quantile function as the gradient of a convex potential implemented by an input-convex neural network, ensuring monotonicity and uniform ranks. To reduce the cost of solving high-dimensional variational problems, we introduced amortized optimization of the dual potentials, yielding efficient training and faster inference. We then exploit the induced multivariate ranks for conformal prediction, constructing distribution-free predictive regions with finite-sample validity. Unlike coordinatewise methods, our approach adapts to the geometry of the conditional distribution, producing tighter and more informative regions. Experiments on benchmark datasets show improved coverage-efficiency trade-offs compared to baselines, highlighting the benefits of integrating neural optimal transport with conformal prediction.

View on arXiv
Comments on this paper