ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.25827
80
0

Overthinking Reduction with Decoupled Rewards and Curriculum Data Scheduling

30 September 2025
Shuyang Jiang
Yusheng Liao
Ya Zhang
Yanfeng Wang
Y. Wang
    OffRLLRM
ArXiv (abs)PDFHTMLGithub (952★)
Main:8 Pages
15 Figures
Bibliography:4 Pages
7 Tables
Appendix:14 Pages
Abstract

While large reasoning models trained with critic-free reinforcement learning and verifiable rewards (RLVR) represent the state-of-the-art, their practical utility is hampered by ``overthinking'', a critical issue where models generate excessively long reasoning paths without any performance benefit. Existing solutions that penalize length often fail, inducing performance degradation due to a fundamental misalignment between trajectory-level rewards and token-level optimization. In this work, we introduce a novel framework, DECS, built on our theoretical discovery of two previously unaddressed flaws in current length rewards: (1) the erroneous penalization of essential exploratory tokens and (2) the inadvertent rewarding of partial redundancy. Our framework's innovations include (i) a first-of-its-kind decoupled token-level reward mechanism that surgically distinguishes and penalizes redundant tokens, and (ii) a novel curriculum batch scheduling strategy to master the efficiency-efficacy equilibrium. Experimental results show DECS can achieve a dramatic reduction in reasoning tokens by over 50\% across seven benchmarks while simultaneously maintaining or even improving performance. It demonstrates conclusively that substantial gains in reasoning efficiency can be achieved without compromising a model's underlying reasoning power.

View on arXiv
Comments on this paper