ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2509.25843
13
0

ASGuard: Activation-Scaling Guard to Mitigate Targeted Jailbreaking Attack

30 September 2025
Yein Park
Jungwoo Park
Jaewoo Kang
ArXiv (abs)PDFHTMLGithub (1★)
Main:10 Pages
9 Figures
Bibliography:6 Pages
2 Tables
Appendix:9 Pages
Abstract

Large language models (LLMs), despite being safety-aligned, exhibit brittle refusal behaviors that can be circumvented by simple linguistic changes. As tense jailbreaking demonstrates that models refusing harmful requests often comply when rephrased in past tense, a critical generalization gap is revealed in current alignment methods whose underlying mechanisms are poorly understood. In this work, we introduce Activation-Scaling Guard (ASGuard), an insightful, mechanistically-informed framework that surgically mitigates this specific vulnerability. For the first step, we use circuit analysis to identify the specific attention heads causally linked to the targeted jailbreaking, the tense-changing attack. Second, we train a precise, channel-wise scaling vector to recalibrate the activation of tense vulnerable heads. Lastly, we apply it into a "preventative fine-tuning", forcing the model to learn a more robust refusal mechanism. Across three LLMs, ASGuard effectively reduces the attack success rate of targeted jailbreaking while preserving general capabilities and minimizing over refusal, achieving a Pareto-optimal balance between safety and utility. Our findings underscore how adversarial suffixes suppress the propagation of the refusal-mediating direction, based on mechanistic analysis. Furthermore, our work showcases how a deep understanding of model internals can be leveraged to develop practical, efficient, and targeted methods for adjusting model behavior, charting a course for more reliable and interpretable AI safety.

View on arXiv
Comments on this paper