ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.00236
92
1

Per-example gradients: a new frontier for understanding and improving optimizers

30 September 2025
Vincent Roulet
Atish Agarwala
ArXiv (abs)PDFHTMLGithub (33585★)
Main:10 Pages
10 Figures
Bibliography:3 Pages
Appendix:17 Pages
Abstract

Training algorithms in deep learning usually treat a mini-batch of samples as a single object; they average gradients over the mini-batch, and then process the average in various ways. Computing other statistics beyond the average may have been seen as prohibitively resource intensive in automatic differentiation (AD) frameworks. We show that this is not the case. Generally, gradient statistics can be implemented through a surgery of the AD graph, which, in some cases, incur almost no computational and memory overheads compared to the mini-batch gradient computation. Additionally, we show that in certain classes of models, including transformers, JAX's vectorization transformation offers a viable implementation for prototyping and experimentation. We then revise our understanding of two nonlinear operations in optimization through the lens of per-example gradient transformations. We first study signSGD and show that the optimal placement of the sign operation in the gradient processing chain is crucial to success and can be predicted with a simple signal-to-noise ratio argument. Next we study per-example variations of the Adam preconditioner, and show that optimization is best served when the preconditioner is dominated by the mean rather than the variance of the gradient distribution - in contrast to conventional wisdom. Overall we demonstrate that per-example gradient information enables new analyses and possibilities for algorithm design.

View on arXiv
Comments on this paper