ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.00311
84
1

CORTEX: Collaborative LLM Agents for High-Stakes Alert Triage

30 September 2025
Bowen Wei
Yuan Shen Tay
Howard Liu
Jinhao Pan
Kun Luo
Ziwei Zhu
Chris Jordan
    LLMAG
ArXiv (abs)PDFHTML
Main:6 Pages
1 Figures
Bibliography:2 Pages
7 Tables
Appendix:9 Pages
Abstract

Security Operations Centers (SOCs) are overwhelmed by tens of thousands of daily alerts, with only a small fraction corresponding to genuine attacks. This overload creates alert fatigue, leading to overlooked threats and analyst burnout. Classical detection pipelines are brittle and context-poor, while recent LLM-based approaches typically rely on a single model to interpret logs, retrieve context, and adjudicate alerts end-to-end -- an approach that struggles with noisy enterprise data and offers limited transparency. We propose CORTEX, a multi-agent LLM architecture for high-stakes alert triage in which specialized agents collaborate over real evidence: a behavior-analysis agent inspects activity sequences, evidence-gathering agents query external systems, and a reasoning agent synthesizes findings into an auditable decision. To support training and evaluation, we release a dataset of fine-grained SOC investigations from production environments, capturing step-by-step analyst actions and linked tool outputs. Across diverse enterprise scenarios, CORTEX substantially reduces false positives and improves investigation quality over state-of-the-art single-agent LLMs.

View on arXiv
Comments on this paper