ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.00514
80
0
v1v2 (latest)

EuroSpeech: A Multilingual Speech Corpus

1 October 2025
Samuel Pfisterer
Florian Grötschla
Luca A. Lanzendörfer
Florian Yan
Roger Wattenhofer
ArXiv (abs)PDFHTMLGithub (7188★)
Main:8 Pages
4 Figures
Bibliography:3 Pages
6 Tables
Appendix:5 Pages
Abstract

Recent progress in speech processing has highlighted that high-quality performance across languages requires substantial training data for each individual language. While existing multilingual datasets cover many languages, they often contain insufficient data for most languages. Thus, trained models perform poorly on the majority of the supported languages. Our work addresses this challenge by introducing a scalable pipeline for constructing speech datasets from parliamentary recordings. The proposed pipeline includes robust components for media retrieval and a two-stage alignment algorithm designed to handle non-verbatim transcripts and long-form audio. Applying this pipeline to recordings from 22 European parliaments, we extract over 61k hours of aligned speech segments, achieving substantial per-language coverage with 19 languages exceeding 1k hours and 22 languages exceeding 500 hours of high-quality speech data. We obtain an average 41.8\% reduction in word error rates over baselines when finetuning an existing ASR model on our dataset, demonstrating the usefulness of our approach.

View on arXiv
Comments on this paper