ThinkBrake: A Simple Test-Time Decoding Control for Efficient Reasoning
- ReLMLRM
Large Reasoning Models (LRMs) allocate substantial inference-time compute to Chain-of-Thought (CoT) reasoning, improving performance on mathematics, scientific QA, and tool usage. However, this introduces overthinking: LRMs often reach a correct intermediate solution, continue reasoning, and overwrite it with an incorrect answer. We first demonstrate that oracle stopping--where we inject </think> at every sentence boundary and select the best stopping point in hindsight--improves average accuracy by 8% while reducing thinking tokens by 72%, exposing substantial overthinking. Motivated by this finding, we propose ThinkBrake, which monitors the log-probability margin between the top continuation token and </think> at sentence boundaries, stopping reasoning when this margin narrows. ThinkBrake requires no training and achieves favorable accuracy-efficiency trade-offs across math, scientific QA, and tool usage benchmarks, reducing thinking token usage by up to 30%. Furthermore, we provide theoretical analysis showing that ThinkBrake is equivalent to test-time realignment with a reward bonus for the </think> token.
View on arXiv