4

Reinforcement Learning with Verifiable yet Noisy Rewards under Imperfect Verifiers

Main:9 Pages
4 Figures
Bibliography:4 Pages
3 Tables
Appendix:8 Pages
Abstract

Reinforcement Learning with Verifiable Rewards (RLVR) trains policies against automated verifiers to avoid costly human labeling. To reduce vulnerability to verifier hacking, many RLVR systems collapse rewards to binary {0,1}\{0,1\} during training. This choice carries a cost: it introduces \textit{false negatives} (rejecting correct answers, FNs) and \textit{false positives} (accepting incorrect ones, FPs). For instance, a rule-based checker may mark the correct fraction 1236\frac{12}{36} as wrong when compared against the canonical 13\frac{1}{3} due to brittle parsing/equivalence rules (FN), while a large language model (LLM) judges can be gamed by superficial cues or even a single adversarial token, yielding inflated correctness for wrong solutions (FP). We formalize verifier unreliability by modeling the verifier as a stochastic reward channel with asymmetric noise rates. From this abstraction, we derive two correction algorithms for verifier errors. The first is a \textit{backward} correction that de-biases the observed binary reward to recover an \textit{unbiased} estimator of the clean policy gradient. The second is a \textit{forward} correction that reweights score-function terms so that the expected update direction aligns with the \textit{clean gradient}; notably, it requires only the FN rate. We implement both as lightweight hooks in a group relative policy optimization (GRPO)-based RLVR pipeline and evaluate them on math-reasoning models and benchmarks. Across models and datasets, both corrections improve over uncorrected training; the forward variant converges faster and remains stable under heavier noise. Finally, we show a practical appeal mechanism in which a lightweight LLM verifier estimates the FN rate online by rechecking rule-based negatives, obtaining outperformance compared with other state-of-the-art contenders.

View on arXiv
Comments on this paper