ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.01004
99
0

TextCAM: Explaining Class Activation Map with Text

1 October 2025
Qiming Zhao
Xingjian Li
Xiaoyu Cao
Xiaolong Wu
Min Xu
    VLM
ArXiv (abs)PDFHTML
Main:9 Pages
12 Figures
Bibliography:4 Pages
Appendix:7 Pages
Abstract

Deep neural networks (DNNs) have achieved remarkable success across domains but remain difficult to interpret, limiting their trustworthiness in high-stakes applications. This paper focuses on deep vision models, for which a dominant line of explainability methods are Class Activation Mapping (CAM) and its variants working by highlighting spatial regions that drive predictions. We figure out that CAM provides little semantic insight into what attributes underlie these activations. To address this limitation, we propose TextCAM, a novel explanation framework that enriches CAM with natural languages. TextCAM combines the precise spatial localization of CAM with the semantic alignment of vision-language models (VLMs). Specifically, we derive channel-level semantic representations using CLIP embeddings and linear discriminant analysis, and aggregate them with CAM weights to produce textual descriptions of salient visual evidence. This yields explanations that jointly specify where the model attends and what visual attributes likely support its decision. We further extend TextCAM to generate feature channels into semantically coherent groups, enabling more fine-grained visual-textual explanations. Experiments on ImageNet, CLEVR, and CUB demonstrate that TextCAM produces faithful and interpretable rationales that improve human understanding, detect spurious correlations, and preserve model fidelity.

View on arXiv
Comments on this paper