ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.01943
20
1

Smooth Quasar-Convex Optimization with Constraints

2 October 2025
David Martínez-Rubio
ArXiv (abs)PDFHTML
Main:7 Pages
1 Figures
Bibliography:3 Pages
Appendix:9 Pages
Abstract

Quasar-convex functions form a broad nonconvex class with applications to linear dynamical systems, generalized linear models, and Riemannian optimization, among others. Current nearly optimal algorithms work only in affine spaces due to the loss of one degree of freedom when working with general convex constraints. Obtaining an accelerated algorithm that makes nearly optimal O~(1/(γϵ))\widetilde{O}(1/(\gamma\sqrt{\epsilon}))O(1/(γϵ​)) first-order queries to a γ\gammaγ-quasar convex smooth function \emph{with constraints} was independently asked as an open problem in Martínez-Rubio (2022); Lezane, Langer, and Koolen (2024). In this work, we solve this question by designing an inexact accelerated proximal point algorithm that we implement using a first-order method achieving the aforementioned rate and, as a consequence, we improve the complexity of the accelerated geodesically Riemannian optimization solution in Martínez-Rubio (2022). We also analyze projected gradient descent and Frank-Wolfe algorithms in this constrained quasar-convex setting. To the best of our knowledge, our work provides the first analyses of first-order methods for quasar-convex smooth functions with general convex constraints.

View on arXiv
Comments on this paper