ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.02350
276
1
v1v2 (latest)

LLMSQL: Upgrading WikiSQL for the LLM Era of Text-to-SQL

27 September 2025
Dzmitry Pihulski
Karol Charchut
Viktoria Novogrodskaia
Jan Kocoń
    KELM
ArXiv (abs)PDFHTMLHuggingFace (3 upvotes)Github (41★)
Main:8 Pages
1 Figures
Bibliography:2 Pages
4 Tables
Abstract

Converting natural language questions into SQL queries enables non-expert users to interact with relational databases and has long been a central task for natural language interfaces to data. While the WikiSQL dataset played a key role in early text-to-SQL research, its usage has declined due to structural and annotation issues, including case sensitivity inconsistencies, data type mismatches, syntax errors, and unanswered questions. We present LLMSQL, a systematic revision and transformation of WikiSQL designed for the large language model era. We classify these errors and implement automated methods for cleaning and re-annotation. To assess the impact of these improvements, we evaluated multiple large language models, including Gemma 3, LLaMA 3.2, Mistral 7B, gpt-oss 20B, Phi-3.5 Mini, Qwen 2.5, OpenAI o4-mini, DeepSeek-R1, and others. Notably, DeepSeek-R1 achieves 88.40% accuracy in a zero-shot setting, and models under 10B parameters surpass 90% accuracy after fine-tuning. Rather than serving as an update, LLMSQL is introduced as an LLM-ready benchmark. Unlike the original WikiSQL, which was tailored for pointer-network models selecting tokens from input, LLMSQL provides clean natural language questions and full SQL queries as plain text, enabling straightforward generation and evaluation for modern natural-language-to-SQL models.

View on arXiv
Comments on this paper