194
v1v2 (latest)

Longitudinal Flow Matching for Trajectory Modeling

Main:8 Pages
9 Figures
Bibliography:4 Pages
6 Tables
Appendix:15 Pages
Abstract

Generative models for sequential data often struggle with sparsely sampled and high-dimensional trajectories, typically reducing the learning of dynamics to pairwise transitions. We propose Interpolative Multi-Marginal Flow Matching (IMMFM), a framework that learns continuous stochastic dynamics jointly consistent with multiple observed time points. IMMFM employs a piecewise-quadratic interpolation path as a smooth target for flow matching and jointly optimizes drift and a data-driven diffusion coefficient, supported by a theoretical condition for stable learning. This design captures intrinsic stochasticity, handles irregular sparse sampling, and yields subject-specific trajectories. Experiments on synthetic benchmarks and real-world longitudinal neuroimaging datasets show that IMMFM outperforms existing methods in both forecasting accuracy and further downstream tasks.

View on arXiv
Comments on this paper