Spectral Thresholds for Identifiability and Stability:Finite-Sample Phase Transitions in High-Dimensional Learning
In high-dimensional learning, models remain stable until they collapse abruptly once the sample size falls below a critical level. This instability is not algorithm-specific but a geometric mechanism: when the weakest Fisher eigendirection falls beneath sample-level fluctuations, identifiability fails. Our Fisher Threshold Theorem formalizes this by proving that stability requires the minimal Fisher eigenvalue to exceed an explicit bound. Unlike prior asymptotic or model-specific criteria, this threshold is finite-sample and necessary, marking a sharp phase transition between reliable concentration and inevitable failure. To make the principle constructive, we introduce the Fisher floor, a verifiable spectral regularization robust to smoothing and preconditioning. Synthetic experiments on Gaussian mixtures and logistic models confirm the predicted transition, consistent with scaling. Statistically, the threshold sharpens classical eigenvalue conditions into a non-asymptotic law; learning-theoretically, it defines a spectral sample-complexity frontier, bridging theory with diagnostics for robust high-dimensional inference.
View on arXiv