ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.04093
151
0
v1v2 (latest)

Harnessing LLM for Noise-Robust Cognitive Diagnosis in Web-Based Intelligent Education Systems

5 October 2025
Guixian Zhang
Guan Yuan
Ziqi Xu
Yanmei Zhang
Jing Ren
Zhenyun Deng
Debo Cheng
ArXiv (abs)PDFHTML
Main:7 Pages
6 Figures
Bibliography:2 Pages
3 Tables
Appendix:3 Pages
Abstract

Cognitive diagnostics in the Web-based Intelligent Education System (WIES) aims to assess students' mastery of knowledge concepts from heterogeneous, noisy interactions. Recent work has tried to utilize Large Language Models (LLMs) for cognitive diagnosis, yet LLMs struggle with structured data and are prone to noise-induced misjudgments. Specially, WIES's open environment continuously attracts new students and produces vast amounts of response logs, exacerbating the data imbalance and noise issues inherent in traditional educational systems. To address these challenges, we propose DLLM, a Diffusion-based LLM framework for noise-robust cognitive diagnosis. DLLM first constructs independent subgraphs based on response correctness, then applies relation augmentation alignment module to mitigate data imbalance. The two subgraph representations are then fused and aligned with LLM-derived, semantically augmented representations. Importantly, before each alignment step, DLLM employs a two-stage denoising diffusion module to eliminate intrinsic noise while assisting structural representation alignment. Specifically, unconditional denoising diffusion first removes erroneous information, followed by conditional denoising diffusion based on graph-guided to eliminate misleading information. Finally, the noise-robust representation that integrates semantic knowledge and structural information is fed into existing cognitive diagnosis models for prediction. Experimental results on three publicly available web-based educational platform datasets demonstrate that our DLLM achieves optimal predictive performance across varying noise levels, which demonstrates that DLLM achieves noise robustness while effectively leveraging semantic knowledge from LLM.

View on arXiv
Comments on this paper