Inductive inference of gradient-boosted decision trees on graphs for insurance fraud detection
- AI4CE

Graph-based methods are becoming increasingly popular in machine learning due to their ability to model complex data and relations. Insurance fraud is a prime use case, since false claims are often the result of organised criminals that stage accidents or the same persons filing erroneous claims on multiple policies. One challenge is that graph-based approaches struggle to find meaningful representations of the data because of the high class imbalance present in fraud data. Another is that insurance networks are heterogeneous and dynamic, given the changing relations among people, companies and policies. That is why gradient boosted tree approaches on tabular data still dominate the field. Therefore, we present a novel inductive graph gradient boosting machine (G-GBM) for supervised learning on heterogeneous and dynamic graphs. We show that our estimator competes with popular graph neural network approaches in an experiment using a variety of simulated random graphs. We demonstrate the power of G-GBM for insurance fraud detection using an open-source and a real-world, proprietary dataset. Given that the backbone model is a gradient boosting forest, we apply established explainability methods to gain better insights into the predictions made by G-GBM.
View on arXiv