112

Incoherence in goal-conditioned autoregressive models

Main:8 Pages
4 Figures
Bibliography:3 Pages
Appendix:10 Pages
Abstract

We investigate mathematically the notion of incoherence: a structural issue with reinforcement learning policies derived by naive goal-conditioning of autoregressive models. We focus on the process of re-training models on their own actions, that is, fine-tuning offline-learned policies with online RL. We prove that it decreases incoherence and leads to an improvement in return, and we aim to characterize the resulting trajectory of policies. By re-framing standard notions of control-as-inference and soft Q learning, we establish a three-way correspondence with two other ways of understanding the iterative re-training process: as folding the posterior into the reward and, in the deterministic case, as decreasing the temperature parameter; the correspondence has computational content via the training-inference trade-off. Through soft-conditioning generative models, we discuss the link between incoherence and the effective horizon.

View on arXiv
Comments on this paper