All Papers
Title |
|---|
Title |
|---|

Industrial surface defect detection (SDD) is critical for ensuring product quality and manufacturing reliability. Due to the diverse shapes and sizes of surface defects, SDD faces two main challenges: intraclass difference and interclass similarity. Existing methods primarily utilize manually designed models, which require extensive trial and error and often struggle to address both challenges effectively. To overcome this, we propose AutoNAD, an automated neural architecture design framework for SDD that jointly searches over convolutions, transformers, and multi-layer perceptrons. This hybrid design enables the model to capture both fine-grained local variations and long-range semantic context, addressing the two key challenges while reducing the cost of manual network design. To support efficient training of such a diverse search space, AutoNAD introduces a cross weight sharing strategy, which accelerates supernet convergence and improves subnet performance. Additionally, a searchable multi-level feature aggregation module (MFAM) is integrated to enhance multi-scale feature learning. Beyond detection accuracy, runtime efficiency is essential for industrial deployment. To this end, AutoNAD incorporates a latency-aware prior to guide the selection of efficient architectures. The effectiveness of AutoNAD is validated on three industrial defect datasets and further applied within a defect imaging and detection platform. Code is available atthis https URL.
View on arXiv