ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.08603
76
0

YpathRAG:A Retrieval-Augmented Generation Framework and Benchmark for Pathology

7 October 2025
Deshui Yu
Yizhi Wang
Saihui Jin
Taojie Zhu
Fanyi Zeng
Wen Qian
Zirui Huang
Jingli Ouyang
Jiameng Li
Zhen Song
Tian Guan
Yonghong He
ArXiv (abs)PDFHTML
Main:8 Pages
9 Figures
Bibliography:2 Pages
3 Tables
Abstract

Large language models (LLMs) excel on general tasks yet still hallucinate in high-barrier domains such as pathology. Prior work often relies on domain fine-tuning, which neither expands the knowledge boundary nor enforces evidence-grounded constraints. We therefore build a pathology vector database covering 28 subfields and 1.53 million paragraphs, and present YpathRAG, a pathology-oriented RAG framework with dual-channel hybrid retrieval (BGE-M3 dense retrieval coupled with vocabulary-guided sparse retrieval) and an LLM-based supportive-evidence judgment module that closes the retrieval-judgment-generation loop. We also release two evaluation benchmarks, YpathR and YpathQA-M. On YpathR, YpathRAG attains Recall@5 of 98.64%, a gain of 23 percentage points over the baseline; on YpathQA-M, a set of the 300 most challenging questions, it increases the accuracies of both general and medical LLMs by 9.0% on average and up to 15.6%. These results demonstrate improved retrieval quality and factual reliability, providing a scalable construction paradigm and interpretable evaluation for pathology-oriented RAG.

View on arXiv
Comments on this paper