96

Hypothesis Hunting with Evolving Networks of Autonomous Scientific Agents

Main:8 Pages
5 Figures
Bibliography:6 Pages
5 Tables
Appendix:32 Pages
Abstract

Large-scale scientific datasets -- spanning health biobanks, cell atlases, Earth reanalyses, and more -- create opportunities for exploratory discovery unconstrained by specific research questions. We term this process hypothesis hunting: the cumulative search for insight through sustained exploration across vast and complex hypothesis spaces. To support it, we introduce AScience, a framework modeling discovery as the interaction of agents, networks, and evaluation norms, and implement it as ASCollab, a distributed system of LLM-based research agents with heterogeneous behaviors. These agents self-organize into evolving networks, continually producing and peer-reviewing findings under shared standards of evaluation. Experiments show that such social dynamics enable the accumulation of expert-rated results along the diversity-quality-novelty frontier, including rediscoveries of established biomarkers, extensions of known pathways, and proposals of new therapeutic targets. While wet-lab validation remains indispensable, our experiments on cancer cohorts demonstrate that socially structured, agentic networks can sustain exploratory hypothesis hunting at scale.

View on arXiv
Comments on this paper