dInfer: An Efficient Inference Framework for Diffusion Language Models
- MoEAI4CE
Diffusion-based large language models (dLLMs) have emerged as a promising alternative to autoregressive (AR) LLMs, leveraging denoising-based generation to enable inherent parallelism. Even more and more open-sourced dLLM models emerge, yet their widespread adoption remains constrained by the lack of a standardized and efficient inference framework. We present dInfer, an efficient and extensible framework for dLLM inference. dInfer decomposes the inference pipeline into four modular components-model, diffusion iteration manager, decoding strategy, and KV-cache manager-and integrates novel algorithms for each component alongside system-level optimizations. Through this combination of algorithmic innovations and system enhancements, dInfer achieves substantial efficiency gains without compromising output quality on LLaDA-MoE. At batch size 1, it surpasses 1,100 tokens per second on HumanEval and averages over 800 tokens per second across six benchmarks on H800 GPUs. Compared to prior systems, dInfer delivers speedup over Fast-dLLM while maintaining similar model performance. Even compared with AR models (with a comparable number of activation parameters and performance) QWen2.5-3B, which is highly optimized with latest vLLM inference engine, dInfer still deliverers - speedup. The implementation of dInfer is open-sourced at this https URL.
View on arXiv