Enhancing Self-Supervised Learning with Semantic Pairs A New Dataset and Empirical Study
- SSL

Instance discrimination is a self-supervised representation learning paradigm wherein individual instances within a dataset are treated as distinct classes. This is typically achieved by generating two disparate views of each instance by applying stochastic transformations, encouraging the model to learn representations invariant to the common underlying object across these views. While this approach facilitates the acquisition of invariant representations for dataset instances under various handcrafted transformations (e.g., random cropping, colour jittering), an exclusive reliance on such data transformations for achieving invariance may inherently limit the model's generalizability to unseen datasets and diverse downstream tasks. The inherent limitation stems from the fact that the finite set of transformations within the data processing pipeline is unable to encompass the full spectrum of potential data variations. In this study, we provide the technical foundation for leveraging semantic pairs to enhance the generalizability of the model's representation and empirically demonstrate that incorporating semantic pairs mitigates the issue of limited transformation coverage. Specifically, we propose that by exposing the model to semantic pairs (i.e., two instances belonging to the same semantic category), we introduce varied real-world scene contexts, thereby fostering the development of more generalizable object representations. To validate this hypothesis, we constructed and released a novel dataset comprising curated semantic pairs and conducted extensive experimentation to empirically establish that their inclusion enables the model to learn more general representations, ultimately leading to improved performance across diverse downstream tasks.
View on arXiv