ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.08938
104
0

Bi-level Meta-Policy Control for Dynamic Uncertainty Calibration in Evidential Deep Learning

10 October 2025
Zhen Yang
Yansong Ma
Lei Chen
ArXiv (abs)PDFHTML
Main:6 Pages
3 Figures
Bibliography:2 Pages
11 Tables
Appendix:2 Pages
Abstract

Traditional Evidence Deep Learning (EDL) methods rely on static hyperparameter for uncertainty calibration, limiting their adaptability in dynamic data distributions, which results in poor calibration and generalization in high-risk decision-making tasks. To address this limitation, we propose the Meta-Policy Controller (MPC), a dynamic meta-learning framework that adjusts the KL divergence coefficient and Dirichlet prior strengths for optimal uncertainty modeling. Specifically, MPC employs a bi-level optimization approach: in the inner loop, model parameters are updated through a dynamically configured loss function that adapts to the current training state; in the outer loop, a policy network optimizes the KL divergence coefficient and class-specific Dirichlet prior strengths based on multi-objective rewards balancing prediction accuracy and uncertainty quality. Unlike previous methods with fixed priors, our learnable Dirichlet prior enables flexible adaptation to class distributions and training dynamics. Extensive experimental results show that MPC significantly enhances the reliability and calibration of model predictions across various tasks, improving uncertainty calibration, prediction accuracy, and performance retention after confidence-based sample rejection.

View on arXiv
Comments on this paper