Guiding Energy-Efficient Locomotion through Impact Mitigation Rewards

Animals achieve energy-efficient locomotion by their implicit passive dynamics, a marvel that has captivated roboticists forthis http URL, methods incorporated Adversarial Motion Prior (AMP) and Reinforcement learning (RL) shows promising progress to replicate Animals' naturalistic motion. However, such imitation learning approaches predominantly capture explicit kinematic patterns, so-called gaits, while overlooking the implicit passive dynamics. This work bridges this gap by incorporating a reward term guided by Impact Mitigation Factor (IMF), a physics-informed metric that quantifies a robot's ability to passively mitigate impacts. By integrating IMF with AMP, our approach enables RL policies to learn both explicit motion trajectories from animal reference motion and the implicit passive dynamic. We demonstrate energy efficiency improvements of up to 32%, as measured by the Cost of Transport (CoT), across both AMP and handcrafted reward structure.
View on arXiv