ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.09817
56
0

Cross-Sensor Touch Generation

10 October 2025
Samanta Rodriguez
Yiming Dou
Miquel Oller
Andrew Owens
Nima Fazeli
    DiffM
ArXiv (abs)PDFHTML
Main:9 Pages
8 Figures
Bibliography:4 Pages
3 Tables
Appendix:3 Pages
Abstract

Today's visuo-tactile sensors come in many shapes and sizes, making it challenging to develop general-purpose tactile representations. This is because most models are tied to a specific sensor design. To address this challenge, we propose two approaches to cross-sensor image generation. The first is an end-to-end method that leverages paired data (Touch2Touch). The second method builds an intermediate depth representation and does not require paired data (T2D2: Touch-to-Depth-to-Touch). Both methods enable the use of sensor-specific models across multiple sensors via the cross-sensor touch generation process. Together, these models offer flexible solutions for sensor translation, depending on data availability and application needs. We demonstrate their effectiveness on downstream tasks such as in-hand pose estimation and behavior cloning, successfully transferring models trained on one sensor to another. Project page:this https URL.

View on arXiv
Comments on this paper